Exercise 23

Differentiate.

$$
f(x)=\frac{x^{2} e^{x}}{x^{2}+e^{x}}
$$

Solution

Use the quotient rule and the product rule to differentiate $f(x)$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(\frac{x^{2} e^{x}}{x^{2}+e^{x}}\right) \\
& =\frac{\left[\frac{d}{d x}\left(x^{2} e^{x}\right)\right]\left(x^{2}+e^{x}\right)-\left[\frac{d}{d x}\left(x^{2}+e^{x}\right)\right]\left(x^{2} e^{x}\right)}{\left(x^{2}+e^{x}\right)^{2}} \\
& =\frac{\left\{\left[\frac{d}{d x}\left(x^{2}\right)\right] e^{x}+x^{2}\left[\frac{d}{d x}\left(e^{x}\right)\right]\right\}\left(x^{2}+e^{x}\right)-\left(2 x+e^{x}\right)\left(x^{2} e^{x}\right)}{\left(x^{2}+e^{x}\right)^{2}} \\
& =\frac{\left[(2 x) e^{x}+x^{2}\left(e^{x}\right)\right]\left(x^{2}+e^{x}\right)-\left(2 x+e^{x}\right)\left(x^{2} e^{x}\right)}{\left(x^{2}+e^{x}\right)^{2}} \\
& =\frac{2 x e^{2 x}+x^{4} e^{x}}{\left(x^{2}+e^{x}\right)^{2}} \\
& =\frac{x e^{x}\left(2 e^{x}+x^{3}\right)}{\left(x^{2}+e^{x}\right)^{2}}
\end{aligned}
$$

